Long Short-Term Memory for Speaker Generalization in Supervised Speech Separation

نویسندگان

  • Jitong Chen
  • DeLiang Wang
چکیده

Speech separation can be formulated as learning to estimate a time-frequency mask from acoustic features extracted from noisy speech. For supervised speech separation, generalization to unseen noises and unseen speakers is a critical issue. Although deep neural networks (DNNs) have been successful in noise-independent speech separation, DNNs are limited in modeling a large number of speakers. To improve speaker generalization, a separation model based on long short-term memory (LSTM) is proposed, which naturally accounts for temporal dynamics of speech. Systematic evaluation shows that the proposed model substantially outperforms a DNN-based model on unseen speakers and unseen noises in terms of objective speech intelligibility. Analyzing LSTM internal representations reveals that LSTM captures long-term speech contexts. It is also found that the LSTM model is more advantageous for low-latency speech separation and it, without future frames, performs better than the DNN model with future frames. The proposed model represents an effective approach for speaker- and noise-independent speech separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification vs. Regression in Supervised Learning for Single Channel Speaker Count Estimation

The task of estimating the maximum number of concurrent speakers from single channel mixtures is important for various audio-based applications, such as blind source separation, speaker diarisation, audio surveillance or auditory scene classification. Building upon powerful machine learning methodology, we develop a Deep Neural Network (DNN) that estimates a speaker count. While DNNs efficientl...

متن کامل

Combining Bottleneck-BLSTM and Semi-Supervised Sparse NMF for Recognition of Conversational Speech in Highly Instationary Noise

We address the speaker independent automatic recognition of spontaneous speech in highly variable noise by applying semisupervised sparse non-negative matrix factorization (NMF) for speech enhancement coupled with our recently proposed frontend utilizing bottleneck (BN) features generated by a bidirectional Long Short-Term Memory (BLSTM) recurrent neural network. In our evaluation, we unite the...

متن کامل

Noise robust ASR in reverberated multisource environments applying convolutive NMF and Long Short-Term Memory

This article proposes and evaluates various methods to integrate the concept of bidirectional Long Short-Term Memory (BLSTM) temporal context modeling into a system for automatic speech recognition (ASR) in noisy and reverberated environments. Building on recent advances in Long Short-Term Memory architectures for ASR, we design a novel front-end for contextsensitive Tandem feature extraction a...

متن کامل

The Munich 2011 CHiME Challenge Contribution: NMF-BLSTM Speech Enhancement and Recognition for Reverberated Multisource Environments

We present the Munich contribution to the PASCAL ‘CHiME’ Speech Separation and Recognition Challenge: Our approach combines source separation by supervised convolutive non-negative matrix factorisation (NMF) with our tandem recogniser that augments acoustic features by word predictions of a Long Short-Term Memory recurrent neural network in a multi-stream Hidden Markov Model. The performance of...

متن کامل

Modeling speaker variability using long short-term memory networks for speech recognition

Speaker adaptation of deep neural networks (DNNs) based acoustic models is still a challenging area of research. Considering that long short-term memory (LSTM) recurrent neural networks (RNNs) have been successfully applied to many sequence prediction and sequence labeling tasks, we propose to use LSTM RNNs for modeling speaker variability in automatic speech recognition (ASR). Firstly, the LST...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 141 6  شماره 

صفحات  -

تاریخ انتشار 2016